Nano-Schottky barrier diodes based on Sb-doped ZnS nanoribbons with controlled p-type conductivity

Qiang Peng, Jiansheng Jie, Chao Xie, Li Wang, Xiwei Zhang, Di Wu, Yongqiang Yu, Chunyan Wu, Zhi Wang, and Peng Jiang

Citation: Applied Physics Letters 98, 123117 (2011); doi: 10.1063/1.3569590
View online: http://dx.doi.org/10.1063/1.3569590
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/98/12?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates

Opto-electrical properties of Sb-doped p-type ZnO nanowires

Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films

Al/Ti contacts to Sb-doped p-type ZnO
J. Appl. Phys. 102, 023716 (2007); 10.1063/1.2759874

p-type behavior from Sb-doped ZnO heterojunction photodiodes
Nano-Schottky barrier diodes based on Sb-doped ZnS nanoribbons with controlled p-type conductivity

Qiangu Peng, Jiansheng Jie,a) Chao Xie, Li Wang, Xiwei Zhang, Di Wu, Yongqiang Yu, Chunyan Wu, Zhi Wang, and Peng Jiang

School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei Anhui 230009, People’s Republic of China

(Received 12 January 2011; accepted 28 February 2011; published online 25 March 2011)

ZnS nanostructures have attracted much attention due to the unique optical and optoelectronic properties.1–4 In order to extend their functions in devices, it is essential to tune the optical, electrical, and magnetic properties. This is typically done by introducing various dopants, as demonstrated, for instance, Mn- and Cu-doped ZnS nanocrystals have shown new luminescence with tunable colors.5,6 Co doping in ZnS nanoparticles also resulted in a 35 times enhancement in the transport properties of the ZnS nanostructures, particularly the p-type conductivity, remains a challenge and is seldom studied. The reliable p-type doping in II-VI films is often obstructed by the serious self-compensation effect. However, owing to the key merits such as high-crystal quality and size effect, more effective p-type doping is anticipated to be achieved in the II-VI nanostructures.

Recently, Yuan and co-workers have fabricated the nitrogen-doped p-type ZnS nanoribbons (NRs) by using ammonia (NH3) as the dopant.8 Nevertheless, ZnS NRs with tunable p-type conductivity is not realized yet, and the capability of other V group elements as the p-type dopants is needed to be further exploited. In addition, practical applications of the p-type ZnS nanostructures in high-performance nanodevices are still lacking and much desired.

Herein, we report the efficient p-type doping in ZnS NRs by using antimony (Sb) as the acceptor dopant. Nano-Schottky barrier diodes (nanoSBDs) fabricated from Al/p-ZnS NR junctions exhibit excellent device performance as well as great potential as high-sensitive UV photodetectors.

Synthesis of the p-ZnS NRs were conducted in a horizontal tube furnace via thermal evaporation. Sb (purity 99.999%) and ZnS powers (purity 99.99%) were loaded on two alumina boats with separation of 8 cm and heated to 800 °C and 1060 °C, respectively, during the NR growth. Si substrates covered with Au catalyst were placed at the downstream position with ~10 cm away from the ZnS source. Ar and H2 (5%) mixture gas was fed at a constant flow rate of 100 SCCM and the gas pressure was adjusted to 200 Torr. After a growth duration of 2 hours, the product was collected from the Si substrates. In this work, two samples with varied doping levels were fabricated, which were marked as sample 2 and sample 3, corresponding to the different ZnS:Sb molar ratio of 2:1 and 1:1, respectively. Undoped ZnS NRs were also synthesized at the same condition except the use of Sb source, which was marked as sample 1. The as-synthesized ZnS:Sb NRs were characterized by x-ray diffraction (XRD, Rigaku D/Max-rb), field-emission scanning electron microscope (FESEM) (SIRION 200 FEG), high-resolution transmission electron microscope (HRTEM, JEOL JEM-2010), and x-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250). Room-temperature photoluminescence (PL) spectra were measured under the excitation of 325 nm laser. To fabricate the field-effect transistors (FETs) based on single NR, the NRs were first dispersed on a SiO2 (300nm)/p+-Si substrate and then Au (80 nm) source and drain electrodes were defined by photolithography and lift-off processes. The Si substrate served as the global back gate. As for the nanoSBDs, additional photolithography process was performed to fabricate the Al (80 nm) Schottky contact.

Figure 1(a) shows the typical SEM image of the ZnS:Sb NRs. It can be seen that the width of the NRs ranges from 200 to 400 nm and the length is from tens of micrometers up to hundreds of micrometers. Energy dispersive spectroscopy (EDS) measurement on the ZnS:Sb NRs reveals a near stoichiometric composition of ~49.4% Zn and ~50.6% S [Fig. 1(b)]. HRTEM image and the corresponding selected-area electron diffraction (SAED) pattern of the ZnS:Sb NR are shown in Fig. 1(c), indicating that the NRs are wurtzite single-crystal with [210] growth orientation. The smooth surface also confirms the high quality of the ZnS:Sb NRs. Fig. 1(d) depicts the XRD patterns of the samples, in which all the diffraction peaks could be assigned to wurtzite ZnS (Joint Committee for Powder Diffraction Standard No. 36-1450), and no obvious peak shift is observed for the ZnS:Sb NRs. In the XPS spectrum [Fig. 1(e)], two weak peaks located at 530.4 and 539.9 eV that correspond to Sb 3d core levels have appeared in addition to the Zn and S signals, indicating that Sb is indeed incorporated into the ZnS NRs with overall content of ~1.5 at. %.

The room-temperature PL spectra of the samples consist of two emission bands [Fig. 1(f)], i.e., the sharp near-band edge emission at ~336 nm and broad green emission at ~520 nm. The latter can be attributed to...
The self-activated defect centers formed by the zinc vacancies. In the Sb-doped ZnS NRs, the Sb dopants are presumed to occupy Zn sites and spontaneously induce Zn vacancies, forming $\text{Sb}_2\text{Zn}^{-2}/\text{H}_2\text{O}$ complexes. Such acceptor complexes have already been investigated and are suggested to be responsible for the p-type conductivity of As or Sb doped ZnO and ZnSe materials. Note that the green-band emissions become stronger from sample 1 to sample 3, implying that the concentration of the Zn vacancies in the ZnS NRs increases with the increasing of Sb doping level.

To assess the electrical properties of the ZnS:Sb NRs, back-gate nanoFETs were fabricated based on individual NRs. Before the measurements, the acceptors in the NRs were activated by a fast-annealing process at 650 °C for 10 min via the dissociation of Sb–H bonds. Figure 2(b) depicts the typical I-V curves measured from the samples. The ideal linearity of the I-V curve confirms the good Ohmic contact between the ZnS NR and the Au electrode. Significantly, it is found that the conductivity of the ZnS NRs has been increased by ~seven orders of magnitude by Sb doping. The undoped ZnS NRs (sample 1) have the conductivity as low as $\sim 6.5 \times 10^{-7} \text{ S cm}^{-1}$, while the conductivity increases dramatically to $3.0 \times 10^{-3} \text{ S cm}^{-1}$ and 9.1 S cm$^{-1}$ for sample 2 and 3, respectively.

Figure 2(c) shows the electrical characteristics of the representative ZnS:Sb NR FETs fabricated from sample 2. The source-drain current (I_{ds}) versus source-drain voltage (V_{ds}) curves were measured under varied gate voltage (V_g) from +40 to -40 V with a step of -20 V. It is noted that the device exhibits an evident p-type gating effect, that is, when V_g decreases (increases), the conductance increases (decreases) correspondingly. This gate dependence clearly proves the p-type nature of the ZnS:Sb NRs. The hole mobility (μ_h) can be further estimated from the channel transconductance (g_{m}) of the nanoFET according to the equation $g_{m} = \frac{\partial I_{ds}}{\partial V_g} = \mu_h C V_g / L^2 = \mu_h \varepsilon_{\text{SiO}_2} W V_{ds} / h L$ in the linear regime of the I_{ds}-V_g curve [inset in Fig. 2(c)], where C is the channel capacitance, L is the channel length (5.8 μm), $\varepsilon_{\text{SiO}_2}$ is the dielectric constant of SiO$_2$ (3.9), W is the channel width (250 nm), and h is the SiO$_2$ thickness (300 nm). From the transfer characteristics, g_{m} is -0.4 nS at $V_{ds} = -5 \text{ V}$, resulting in a hole mobility of $\sim 0.2 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. Furthermore, the hole concentration (n_h) is deduced to be $\sim 9.3 \times 10^{16} \text{ cm}^{-3}$ through the relation $n_h = \sigma / \mu_h$, where σ is the conductivity of the NR at $V_g = 0$, and q is the elementary charge.

FIG. 1. (Color online) Characterizations of the ZnS:Sb NRs (a) SEM image. (b) EDS spectrum. (c) HRTEM image. Inset shows the corresponding SAED pattern. (d) XRD pattern. (e) XPS spectrum. Inset shows two peaks at 530.4 eV and 539.9 eV, corresponding to Sb $3d_{5/2}$ and Sb $3d_{3/2}$, respectively.

FIG. 2. (Color online) (a) Schematic illustration of the back-gate nanoFET based on the ZnS:Sb NR. (b) Typical I-V curves of both the undoped and Sb-doped NRs. Inset shows the SEM image of the device. (c) and (d) are electrical transfer characteristics of sample 2 and sample 3, respectively. I_{ds}-V_{ds} curves were plotted at varied V_g. Insets show the I_{ds}-V_g curves at $V_{ds} = -5 \text{ V}$.

FIG. 3. (Color online) (a) Schematic illustration of the nanoSBD based on the ZnS:Sb NR. (b) SEM image of the nanoSBD with artificial colors. (c) I-V curve measured between two adjacent Au electrodes. (d) Rectifying characteristics of five different nanoSBDs, which are marked from SBD 1 to SBD 5. Inset shows the semi-log plots of the rectifying curves. (e) I_{ds} vs voltage of SBD 1. The series resistance R_s is estimated by linearly fitting the data. (f) Semilog I-V curves of the SBD 1 with and without R_s correction at forward bias.
charge. Analogous analysis was performed to sample 3 [Fig. 2(d)], revealing the \(g_m \), \(\mu_0 \) and \(n_0 \) values of 86.4 nS, 22.3 cm\(^2\) V\(^{-1}\) s\(^{-1}\), and 6.5 \times 10\(^{18}\) cm\(^{-3}\), respectively. The larger hole mobility for sample 3 is a result of improved electrical contact between the electrode and the NR at higher doping level. From the value of the hole concentration, we can judge that only a small fraction of Sb in the source contributes to the doping, which might be caused by the poor solubility of Sb in ZnS.

To further exploit the device applications of the p-type ZnS:Sb NRs, nanoSBDs were constructed by using Al as the Schottky contact, as shown in Fig. 3. The Ohmic contact of the Au electrode with the p-ZnS NR is first verified by the linear I-V curve measured from two adjacent Au electrodes [Fig. 3(g)]. In contrast, obvious rectifying behavior is observed between the Al and Au electrodes. Further analysis reveals a low turn-on voltage of \(\sim 0.35 \) V and a high rectification ratio \(> 10^4 \) for the device [Fig. 3(d)]. Measurements on five different nanoSBDs exhibit the similar results, indicating the good reproducibility of the devices. It is known that the total current for a Schottky diode is composed of both the thermionic emission and the tunneling components. Assuming that the thermionic emission is the predominant mechanism, the I-V characteristics of the nanoSBD in the forward bias regime are given by the following relations:

\[
I = I_0 \left[\exp \left(\frac{qV}{nkT} \right) - 1 \right] = I_0 \exp \left(\frac{qV}{nkT} \right),
\]

\[
I_0 = A A^* T^2 \exp \left(- \frac{q \Phi_b}{kT} \right),
\]

where \(I_0 \) is the reverse saturation current, \(n \) the ideality factor, \(A \) the Schottky contact area, \(A^* \) the effective Richardson constant, and \(\Phi_b \) the Schottky barrier height. The ideality factor \(n \) can be written as \(n = (q/kT)(dV/d \ln I) \) based on Eq. (1). From the semilog I-V plots [inset in Fig. 3(d)], \(n \) is determined to be 1.31–1.39 for the nanoSBDs. And \(\Phi_b \) is deduced to be 0.62–0.66 eV from Eq. (2).

It is noted that the semi-log I-V curves of the nanoSBDs are linear at low forward bias voltage, but deviate considerably from linearity at large bias voltage. One of the possible reasons is the existence of series resistance (\(R_s \)). The Eq. (1) could be modified to \(I = I_0 \left[\exp \left(q(V-I R_s)/nkT \right) - 1 \right] \) \(= I_0 \exp \left(q(V-I R_s)/nkT \right) \) by taking account of \(R_s \). Here, \(R_s \) is evaluated by using Lieb–So–Nicolet method. This method is based on Norde-type function that defined by \(G_{AV}(V, I) = (V/a) - (kT/q) \ln \{ A A^* T^2 \} \), where \(a \) is an arbitrary parameter larger than \(n \) and determined by \((1/a) = (kT/q) \times (d \ln I/d V) \) at \(I = I_{s0} \). Setting \(d G_{AV}/d V = 0 \) at \(I = I_{s0} \), \(a = (kT/q R_s) - (nkT/q R_s) \) is deduced. Eventually, the \(R_s \) value is estimated to be 99.4 k\(\Omega \) by linearly fitting the \(I_{s0} \)-a curve [Fig. 3(e)]. When the value of \(R_s \) is obtained, it could be used to accurately calculate \(n \) and \(\Phi_b \). Figure 3(f) shows the corrected semi-log I-V characteristics of the nanoSBD, and corrected \(n \) and \(\Phi_b \) values of 1.22 eV and 0.71 eV, respectively, are obtained.

Upon the UV light illumination (254 nm, 300 \(\mu \) W cm\(^{-2}\)), the nanoSBD shows a remarkable increase in the photocurrent (Fig. 4). The \(I_{\text{light}}/I_{\text{dark}} \) ratio is about 3 at forward bias (+1 V), in contrast to the large value of >10\(^3\) at reverse bias (−1 V). The enhancement of the photocurrent at forward bias mainly comes from the reduction in the Schottky barrier, while the electron-hole pairs excited by the UV light at the junction region are responsible for the photocurrent at reverse bias. The low dark current at reverse bias results in the high \(I_{\text{light}}/I_{\text{dark}} \) ratio. We also note that the device shows higher response speed at reverse bias. The trap states in the p-ZnS NRs limit the response speed at the forward bias. At reverse bias, however, the electron-hole pairs could be separated quickly by the strong self-built in electric field at the junction, thus leading to a higher response speed.

In summary, p-type ZnS NRs were fabricated by using Sb as the dopant via thermal evaporation. NanoSBDs based on the Al/p-ZnS NR Schottky junctions exhibited excellent rectifying behaviors. The potential of nanoSBDs as high sensitive UV photodetectors was also investigated. Our results demonstrate that the p-type ZnS NRs are promising building blocks for future nano-optoelectronic applications.

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 60806028 and 2090102), Program for New Century Excellent Talents in Universities of the Chinese Ministry of Education (Grant No. NCET-08-0764), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91027021), and the Fundamental Research Funds for the Central Universities.